

EASYWAX JIP A JIP DEDICATED TO WAX DEPOSITION

Myriam DARBOURET (myriam.darbouret@ifpen.fr)

1

PETROBRAS

WAX DEPOSITION CONTEXT

Current tools and methods		
Modeling predictive tools Several models available (MWP, Olga, TuWax, Leda) A criterion of 2 mm thickness before pigging Dispersed results	Experimental means Flowloops equipped with pressure drop measurements, and sampling methods. Tests under high temperature gradients	 Field monitoring Only through pressure drop (too late?) → Pigging frequency optimized depending on the amount of materials scraped by the pig No reliable real time
Which one to trust?	(Representativeness?)	monitoring of wax deposit thickness

Onshore / Offshore production lines

2 © | 2021 IFPEN JIP EasyWax

REMAINING CHALLENGES

Responsible oil and gas

During design phase

A need for reliable **predictions** of wax deposit

- To reduce safety margin
 - Optimized insulation thickness needed
 - Optimized remediation strategy

During production phase

A need for reliable **estimates** of wax deposit thickness

- To optimize production operations
 - Pigging frequencies
 - Chemical dosages

EASYWAX JIP

Main objectives

Provide recommendations for <u>Design</u> phase

- Identify the predominant mechanisms in wax deposit growth
- Propose a characterization workflow that provide a reliable estimate of the input needed for predictive tools
- Obtain a database using a heavily instrumented pilot scale flowloop that can be compared to the results of predictive codes used by sponsors in single and multiphase flows
- Assess the efficiency of partial melting as a remediation technique

Explore monitoring techniques for <u>Production</u> phase

- Survey the literature and assess the most promising monitoring techniques for wax deposition detection
- Test a pilot loop prototype
- Assess the performance of specific new sensors in various flow conditions (single phase, multiphase)
- 6 © | 2021 IFPEN JIP EasyWax

An ambitious program to tackle the whole challenges of wax deposit

EASYWAX JIP

An ambitious project built on IFPEN unique multiscale, multitechniques capabilities

> Heavily instrumented multiphase pilot loop

> > Innovative characterization techniques

Multiscale setup: from lab to pilot scale

Modeling and experimental studies

5 JIP EasyWax 2021 IFPEN C

PEnergies nouvelles

a ifpen Ressources

Coupling

oil and gas

EASYWAX JIP WP1 :Predominant mechanisms in wax deposition

6

Velocity map Updated Deposition Litterature/ mechanism Technology Theoretical study watch with model fluids modeling, Density map (visualization setmonitoring/detection, up) characterization **MRI** techniques SAXS/WAXS techniques Deposit Remediation QI Waxy crude oil structure techniques X-ray Deposit Innovative (optional) characterization Cold wall (Rheometer and means (SAXS/ Profiles accross the deposit SAXS/WAXS) WAXS, MRI) (Chain lengths, concentration,..) 👖 itpen P Energies nouvelles JIP EasyWax © | 2021 IFPEN

Responsible oil and gas

EASYWAX JIP WP2 : A multiscale experimental workflow – a case study

Which tests to characterize the deposition mechanism?

Lab scale: Crude oil* and deposits characterization

- WAT, solubility curve (DSC)
- Wax content (GC)
- Rheology (impact of solid wax crystals content on yield stress and viscosity)

*Crude oil sample provided by one of the sponsors

Middle-scale: Wax Deposit formation

- Controlled temperature gradient and shear rate
- Kinetics of the deposit growth
- Diffusion coefficient determination

[crystals]

oil and gas

Impact of experimental conditions on wax deposition

- □ Impact of gelation at the wall and of crystals in bulk
- Link between T_{wall} and deposit composition and rheology
- Tests at different T_{wall} between PP and WAT

© | 2021 IFPEN

A multi-scale experimental workflow

EASYWAX JIP WP3 :Pilot scale: Lyre loop tests and tests of monitoring

oil and gas

8

C

Responsible oil and gas

EASYWAX JIP

Benefits

A multiscale approach: from lab to pilot scale

- Innovative characterization means to study the deposit microstructure and deposition mechanisms
- Overlapping conditions for experiments with different techniques and scales
- Well-chosen experimental conditions regarding the wall temperature gradient
- Open-minded approach regarding deposition mechanisms

Building on existing softwares to define their domain of validity and optimal workflow

- Insight on most promising monitoring techniques
- Assess the efficiency of partial melting as a remediation technique

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

